Skip to main content

Posts

Showing posts with the label Tutorials

STC MICROCONTROLLER PROGRAMMING

                                STC microcontrollers are a series of microcontrollers developed by STC Microelectronics, a Chinese semiconductor company. These microcontrollers are widely used in various embedded systems and electronic projects. Here's a general introduction to STC microcontrollers: 1. Manufacturer: STC Microelectronics is a leading manufacturer of microcontrollers, and their products are commonly used in applications such as industrial control, consumer electronics, and automation. 2. Architecture: STC microcontrollers are based on the 8051 architecture, a popular and widely used microcontroller architecture. The 8051 architecture is known for its simplicity, ease of use, and versatility. 3. Features: > STC microcontrollers come with a...

ARDUINO PORTENTA H7 Tutorial

Portena H7 simultaneously run high level code along with real time tasks. H7 main processor is the STMICROELECTRONICS dual core STM32H747  including an ARM CORTEX -M7 running at 480 MHz and ARM COTEXT M4 running at 240MHz. The two core communicate via a Remote Procedure call mechanism that allows calling functions on the other processor seamlessly. The  Portenta H7  simultaneously runs high level code along with real time tasks, since it includes two processors that can run tasks in parallel. For example, it is possible to execute Arduino compiled code along with MicroPython one and have both cores to communicate with one another. The Portenta functionality is two-fold, it can either be running like any other embedded microcontroller board or as the main processor of an embedded computer. There are many features in one module  STM32H747 dual-core processor 8 MB SDRAM 16 MB  NOR FLASH 10/100 ETHERNET PHY USB HIGH SPEED SECURE ELEMENT WIFI/ BLUETOOTH MODULE UFL CO...

Getting Started with mmWave Sensor MR60BHA1 and Arduino

Introduction : The MR60BHA1 mmWave Sensor is a compact and efficient radar sensor that utilizes millimeter-wave technology to detect objects, measure distance, and track motion. With its high precision and low power consumption , this sensor is ideal for applications in robotics, automation, and security systems. . Millimeter-wave (mmWave) sensors operate at extremely high frequencies, typically in the 30GHz to 300GHz range, allowing them to detect objects with great accuracy regardless of lighting conditions. Unlike optical sensors, mmWave sensors can penetrate fog, dust, and even certain materials, making them reliable in harsh environments. The MR60BHA1 is one such sensor that operates at 60GHz , providing precise motion detection and range measurement capabilities. By integrating the MR60BHA1 with an Arduino , users can develop a variety of projects, such as human presence detection , security systems , and robotic navigation . In this blog, we will explore how to interface...

Exploring Color Sensing with Arduino: A Journey into the World of RGB Detection

                           In today's tech-driven world, the Arduino platform continues to empower enthusiasts and professionals alike to explore the realms of electronics and programming. One fascinating avenue within this domain is color sensing using Arduino boards. With the integration of RGB sensors, Arduino opens up a world of possibilities for projects ranging from color sorting machines to ambient light displays. Let's delve into the exciting world of color sensing with Arduino and discover its applications, principles, and how you can embark on your own creative endeavors. Understanding Color Sensing       At the heart of color sensing lies the ability to distinguish between different wavelengths of light. RGB (Red, Green, Blue) sensors are commonly used for this purpose. These sensors typically consis...